Tag Archives: Albert Einstein

Keberpasangan: dari Teori Fisika, Ayat Al Quran dan Alkitab [2]

artikel sebelumnya : Keberpasangan: dari Teori Fisika, Ayat Al Quran dan Al Kitab [1]

Perseteruan

Dalam abad 20, terjadi perseteruan hebat antara Fisika Relativitas dan Fisika Kuantum. Pada akhir Oktober 1927, atas prakarsa pengusaha sabun kaya raya, Ernst Solway, pertama kali diselenggarakan pertemuan paling penting dalam sejarah sains modern. Pertemuan ini terkenal dengan sebutan Konferensi Solway, bertempat di Hotel Metropole, Brussel, Belgia. Pertemuan pertama ini menjadi sangat terkenal lantaran terjadi perseteruan antara dua pemikir garis depan, Niels Bohr dan Albert Einstein. Perseteruan tersebut dipicu oleh pengumuman Bohr tentang tafsirannya terhadap Teori Kuantum, yang kemudian terkenal dengan sebutan Aliran Kopenhagen.

Aliran Kopenhagen memperkenalkan dua prinsip paling mendasar dalam fisika, yakni Prinsip Saling Melengkapi (dalam kaitannya dengan konsep materi) dan Prinsip Ketidakpastian (dalam kaitannya dengan konsep ruang-waktu). Masalahnya timbul manakala Einstein secara terbuka menyatakan ketidaksetujuannya terhadap Prinsip Ketidakpastian, yang diyakini sebagai pengganti Prinsip Sebab-Akibat. Setiap jamuan teh sore hari, Einstein selalu menyerang prinsip-prinsip Bohr. Ia merancang berbagai percobaan pikiran untuk menemukan berbagai kontradiksi dalam prinsip tersebut. Namun selalu saja Bohr mampu menemukan kelemahan konsep Einstein dan  mementahkannya.

Pada konferensi selanjutnya, tahun 1930, Einstein mengajukan apa yang disebutnya sebagai paradoks kotak cahaya, yang dirancang untuk menggugurkan ketidakpastian. Ia mengambarkan kotak penuh cahaya dan menganggap energi foton dan waktu pancarannya bisa ditentukan secara pasti. Waktu dan energi adalah sepasang variabel yang memenuhi Prinsip Ketidakpastian. Caranya kotak ditimbang terlebih dahulu. Dengan pengatur cahaya yang dijalankan jam di dalam kotak, satu foton dipancarkan. Lalu kotak tersebut ditimbang lagi untuk mengetahui massanya. Kalau perubahan massanya diketahui, maka energi foton dapat dihitung dengan persamaan E=mc2. Perubahan energi diketahui dengan tepat, begitu juga waktu pancaran fotonnya, sehingga gugurlah Prinsip Ketidakpastian.

Percobaan pikiran ini membuat Bohr kelimpungan. Semalam suntuk ia mencari kelemahan hujah Einstein. Pagi harinya Bohr menggambarkan kotak cahaya. Dengan gigih, ia mematahkan argumen Einstein: “Ketika foton dipancarkan terjadi sentakan yang menyebabkan ketidakpastian posisi jam dalam medan gravitasi bumi. Ini menyebabkan semacam ketidakpastian pencatatan waktu berdasarkan asumsi Teori Relativitas Umum”.

Einstein sejauh itu kalah dalam berbagai adu argumentasi dengan Bohr. Namun perseteruan berlanjut hingga tahun 1935, ketika ia menetap di Amerika Serikat dan menjadi guru besar di Institute for Advanced Study, Princeton. Einstein mengajukan paradoks yang sampai sekarang masih diperdebatkan. Bersama dua kolega mudanya, Boris Podolsky dan Nathan Rosen, ia mengajukan masalah yang terkenal dengan sebutan Paradoks EPR (Einstein-Podolsky-Rosen) untuk meruntuhkan Prinsip Ketidakpastian.

Kalau ada sepasang partikel, misalnya A dan B, dalam keadaan tunggal atau kedua spinnya saling meniadakan (berpasangan). Keduanya bergerak saling menjauh dalam arah tertentu. Suatu ketika spin A ditemukan dalam keadaan ‘atas’. Karena kedua spin harus saling meniadakan, maka dalam arah yang sama spin B harus dalam keadaan ‘bawah’. Fisika klasik sama sekali tidak mempersoalkan hal ini. Cukup disimpulkan bahwa spin B harus selalu ‘bawah’ sejak pemisahan. Masalahnya mulai tampak manakala Aliran Kopenhagen memperlakukan spin A selalu tak pasti sampai ia diukur dan harus mempengaruhi B seketika itu juga, yaitu mengatur agar spin B berpasangan dengannya. Ini berarti ada aksi pada jarak atau komunikasi yang lebih cepat dari kecepatan cahaya, yang tidak bisa diterima. Einstein dan para koleganya mengusulkan apa yang disebut Prinsip Lokalitas sebagai jalan tengah paradoks ini, sehingga ia mengartikannya sebagai kealpaan Aliran Kopenhagen. Kalau sistem tersebut dipisahkan satu sama lain, pengukuran yang satu tentu tidak akan berpengaruh terhadap yang lain. “Jangan pernah lupakan Teori Relativitas Khusus saya: tidak ada yang lebih cepat dari cahaya”, demikian Einstein menegaskan.

Meskipun demikian, Bohr tetap tidak setuju terhadap konsep pemisahan tersebut. Ia segera mengingatkan Einstein dan semua penyokong sains bahwa mazhabnya selalu menegaskan bahwa mekanika kuantum sangat tidak memperbolehkan pemisahan antara pengamat dan yang diamati. Dua elektron dan pengamat adalah bagian dari satu sistem yang utuh. Jadi, percobaan EPR, menurut dia, tidak membuktikan ketidaklengkapan Teori Kuantum. “Sangat naif anggapan bahwa sistem atom dapat dipisah-pisah. Sekali dikaitkan, sistem atom tak akan pernah terpisahkan”, demikian Bohr menegaskan.3

Dalam pengamatan-pengamatan selanjutnya didapatkan bahwa Prinsip Ketidakpastian berlaku dalam dunia skala kecil dan dapat diabaikan dalam dunia skala besar. Sebaliknya, sebab-akibat berlaku dalam dunia skala besar dan dapat diabaikan dalam dunia skala kecil. Pola yang sangat teratur itu memperlihatkan adanya relasi keberpasangan. Bahwa sebab-akibat maupun ketidakpastian bukanlah dua hal yang saling mengalahkan satu sama lain. Mereka berlaku kedua-duanya, berdampingan, dan sederajat, sebagai sebuah keberpasangan. Alat ukur fisikawan yang tidak bisa lebih halus lagi dari gelombang elektromagnetik menyebabkan usikan-usikan terhadap objek pengamatan. Bagi objek-objek halus seperti elektron, usikan itu akan sangat mengganggu ketelitian pangukuran, sedangkan bagi objek-objek yang kasat mata seperti bola, meja, bintang, planet, dan sebagainya, usikan-usikan itu tidaklah berarti. Maka diyakini bahwa pengaruh ketidakpastian sangat kuat dalam dunia partikel subatomik dan diabaikan dalam dunia skala besar, sedangkan pengaruh sebab-akibat Newton dapat diamati dalam dunia skala besar bintang dan diabaikan pada dunia partikel subatomik.

Selain kasus-kasus di atas, mestinya masih banyak kasus keberpasangan lain dalam fisika. Kasus-kasus di atas ditemukan setelah konsep-konsepnya mapan. Kalau prosesnya diperluas, yakni mengintegrasikan keberpasangan dalam konsep-konsep yang belum mapan secara eksperimen, misalnya Teori Supersimetri dan Superstring, kita akan mendapatkan yang lebih banyak lagi. Tapi apakah kita bisa melakukannya?

Di Alkitab

Sekedar informasi, pada tanggal 17 November 2008, saya menemukan ayat-ayat dalam Alkitab yang menjelaskan secara eksplisit (meskipun tidak seeksplisit Alquran) mengenai keberpasangan:

“Di sana ular pohon bersarang dan bertelur, mengeram sampai telurnya menetas, burung-burung berdendang saja berkumpul di sana, masing-masing dengan pasangannya. Carilah di dalam kitab Tuhan dan bacalah: satu pun dari semua makhluk itu tidak ada yang ketinggalan dan yang satu tidak kehilangan yang lain, sebab begitulah perintah yang keluar dari mulut Tuhan, dan Roh Tuhan sendiri telah mengumpulkan mereka (Yesaya 34:15-16)”.

Disarikan dari:

1Tafsir Al-Mishbah (Quraisy Shihab)

2Seri Mengenal dan Memahami Einstein (Joseph Schwartz dan Michael

McGuinness)

3Seri Mengenal dan Memahami Teori Kuantum (JP. McEvoy dan Oscar Zarate)

Einstein: Newton forgive me…. [2]

Ada dua postulat dalam teori relativitas khusus ini. Yang pertama menyatakan bahwa semua hukum fisika yang berlaku di bumi, berlaku juga di seluruh jagad raya. Yang kedua menyatakan bahwa kecepatan cahaya di ruang hampa selalu konstan (sekitar tiga ratus juta meter per detik, atau sering ditulis dalam bentuk kerennya: 3.108 meter per detik). Postulat yang kedua ini menunjukkan bahwa bagaimanapun cara kita mengukurnya, kecepatan cahaya tidak pernah berubah. Apa pun patokan yang kita gunakan untuk mengukur kecepatan cahaya, di mana pun posisi kita saat mengukur, dan berapa pun kecepatan kita (apakah kita sedang bergerak atau sedang duduk diam) saat mengukur, kecepatan cahaya selalu konstan. Ini menunjukkan bahwa kecepatan cahaya merupakan satu-satunya yang bersifat absolut. Postulat yang pertama pun menyatakan bahwa kondisi ini selalu berlaku di mana pun juga. Ini berarti, jika kita mengukur kecepatan cahaya di galaksi lain, kita tetap mendapatkan hasil yang sama, yaitu tiga ratus juta meter per detik!

Postulat-postulat Einstein ini ternyata memberi dampak besar bagi dunia. Ia pernah mencoba menjelaskan efek yang dihasilkan dari teorinya ini dalam perumpamaan berikut. Misalnya ada sebuah kereta yang sedang meluncur cepat. Si A sedang duduk dengan tenang dalam salah satu gerbong kereta itu. Si B sedang berdiri diam di luar kereta dan mengamati kereta yang meluncur di depannya itu. Sewaktu gerbong kereta yang dinaiki si A meluncur tepat di depannya, tiba-tiba ada kilat menyambar di dua tempat yang berbeda. Kilat pertama menyambar 100 meter di sebelah kanan B, sedangkan kilat yang satunya lagi menyambar 100 meter di sebelah kiri B. Saat kedua kilat menyambar, posisi A tepat di depan B. Karena si B sedang berdiri diam di luar kereta yang sedang meluncur, si B melihat kedua kilat itu menyambar pada saat yang bersamaan. Tetapi lain halnya dengan si A. Si A yang sedang berada di dalam kereta yang meluncur cepat (ke arah kanan si B) melihat kedua kilat menyambar satu per satu. Kilat yang pertama terlihat lebih dulu, beberapa saat kemudian baru kilat yang kedua terlihat oleh A. Padahal jarak A terhadap kilat pertama dan kedua sama dengan jarak B terhadap kedua kilat itu. Perbedaan ini disebabkan bedanya kerangka acuan A dan B (frame of reference). Si A sedang ‘meluncur’, sedangkan si B sedang berdiri ‘diam’. Karena si A sedang bergerak menuju kilat yang pertama, tentu saja kilat yang pertama itu terlihat lebih dulu. A bergerak menjauhi kilat yang kedua, sehingga kilat yang kedua tampak menyambar sesudah kilat yang pertama. Bagi si B yang sedang diam dan tidak mendekati maupun menjauhi kedua kilat itu, keduanya tampak menyambar pada waktu yang bersamaan. Yang mana yang benar? Keduanya benar! Tidak ada yang salah. Karena itulah ini dinamakan relativitas. Semua bergantung pada kerangka acuan yang digunakan. Dan apa pun kerangka acuannya, hukum-hukum fisika yang sama selalu berlaku (postulat 1). Sekarang jika si A dan si B sama-sama diminta untuk menghitung kecepatan cahaya, apa hasilnya akan berbeda? Tidak! Walaupun si A sedang bergerak dan si B sedang diam, keduanya akan mendapati bahwa kecepatan cahaya tetap tiga ratus juta meter per detik.

Ada konsekuensi dari teori relativitas ini. Yang paling terkenal adalah mulurnya waktu dan kontraksi panjang. Mulurnya waktu, atau bahasa kerennya Time Dilation, ini maksudnya bahwa jika suatu jam bergerak dengan kecepatan tertentu, waktunya akan memuai (mulur). Misalnya ada seorang astronot yang membawa jam tangannya saat menjalankan misi ke luar angkasa. Pesawat luar angkasa yang membawanya meluncur sangat cepat. Jika kita, yang berada di bumi, punya teropong yang sangat sensitif dan bisa melihat ke dalam pesawat yang sedang meluncur cepat itu, kita bisa menggunakan teropong itu untuk mengintip jam tangan si astronot. Sebelum si astronot berangkat kita sudah menyesuaikan jam tangan itu dengan jam tangan yang kita gunakan di bumi. Aneh, di jam tangan si astronot yang sedang meluncur di luar angkasa itu koq lebih lambat dibanding jam tangan kita di bumi? Padahal sebelum ia berangkat kedua jam sudah dicocokkan dan si astronot tidak mengubahnya sama sekali sejak keberangkatannya itu. Jarum detiknya tampak bergerak lebih lambat dibanding jarum detik di jam tangan kita. Inilah yang disebut dengan waktu yang mulur saat bergerak pada kecepatan tinggi. Semakin besar kecepatan gerak suatu benda atau partikel, waktu akan berjalan semakin lambat bagi benda atau partikel tersebut! Tentu saja hal ini tidak dirasakan oleh si astronot. Menurut si astronot, jam tangannya tidak berubah kecepatannya, yang berubah justru kecepatan jam tangan kita di bumi yang tampak bergerak lebih cepat. Hal ini disebabkan segala sesuatu di dalam pesawat astronot bergerak lambat termasuk proses metabolisma tubuh, getaran atom dan sebagainya.

Kontraksi panjang juga berkaitan dengan perbedaan kecepatan. Misalnya si astronot agak lelah, lalu mulai berbaring di tempat tidur yang sudah disediakan di pesawat luar angkasanya. Dengan teropong yang sama, kita bisa mengintip si astronot yang tidur berbaring itu. Aneh, sewaktu berbaring koq si astronot tampak lebih pendek? Sewaktu ia masih di bumi dan pesawatnya belum berangkat, ia tampak tinggi. Lebih aneh lagi, sewaktu ia sudah terbangun lagi dari tidurnya dan kembali berdiri, tiba-tiba ia kelihatan tinggi seperti biasa. Tetapi ia juga kelihatan lebih kurus saat berdiri! Ada apa ini? Apa ia menyusut sewaktu sedang tidur? Tentu tidak!  Karena ia sedang berada dalam pesawat yang meluncur cepat, saat ia tidur kita melihat panjang tubuhnya menciut (terjadi kontraksi panjang). Saat ia berdiri, kita melihat lebar tubuhnya menciut (juga merupakan kontraksi panjang). Ia sendiri tidak merasakan perubahan apa-apa di dalam pesawat. Nah, inilah serunya teori relativitas!

Tunggu dulu! Ada yang lebih seru lagi dari ini. The Twin Paradox. Apa itu? Misalnya kita pergi ke ruang angkasa menggunakan pesawat yang meluncur sangat cepat menjauhi bumi, dan kemudian kembali lagi ke bumi sepuluh tahun setelah pesawat lepas landas. Bagi kita yang berada di pesawat itu, kita hanya pergi selama satu tahun saja (karena adanya time dilation)! Jika kita punya saudara kembar yang menunggu kita di bumi, kita bisa melihat sendiri bahwa saat kita mendarat, kembaran kita (yang lahirnya bersamaan dengan kita) sudah 9 tahun lebih tua dari kita! Ini adalah salah satu akibat dari dilatasi waktu. Aneh tapi nyata!

Teori relativitas khusus ini telah banyak digunakan oleh para fisikawan dalam menelorkan karya-karya hebatnya. Sudah banyak bukti-bukti yang menunjukkan kebenarannya. Inilah hebatnya Einstein! Ia menelorkan teori tersebut murni dari hasil pemikiran otaknya saja, tanpa ada bantuan dari siapapun. Ia tidak pernah berdiskusi dengan siapapun dan tidak pernah menjalankan percobaan apapun untuk mendukung teori ini. Tetapi ternyata teori ini justru terbukti benar saat beberapa fisikawan mencobanya dalam berbagai eksperimen. Teori Einstein yang menelorkan konsep kecepatan cahaya inipun membuat heboh dunia karena bertentangan dengan teori Newton. Menurut Newton, jika sebuah benda yang sedang bergerak akan terus bergerak pada kecepatan sama jika tidak ada gaya lain yang mempengaruhinya. Jika kita memberikan gaya tambahan (secara terus-menerus) pada benda yang bergerak itu, maka gerakannya akan terus dipercepat. Ini berarti kecepatannya terus bertambah sampai pada kecepatan tak hingga, asalkan kita terus memberikan gaya yang dibutuhkan untuk mempercepat benda itu. Einstein langsung menyatakan: “Newton, forgive me…” karena menurut Einstein ini tidak mungkin terjadi! Semakin besar kecepatan yang diinginkan semakin besar pula gaya yang harus diberikan. Untuk mencapai kecepatan cahaya, kita harus memberikan energi dalam jumlah yang tak hingga (infinite). Hal ini tidak mungkin bisa dilakukan karena energi hanya ada dalam jumlah tertentu (finite) sebagai akibat dari Hukum Kekekalan Energi (energi tidak dapat diciptakan maupun dimusnahkan). Jumlah energi yang tersedia tidak pernah bertambah sehingga kecepatan cahaya tidak mungkin bisa dicapai.

Disamping Teori Relativitas Khusus, Einstein juga mengembangkan Teori Relativitas Umum (The General Theory of Relativity). Dalam teori ini Einstein memperhitungkan pengaruh gravitasi pada cahaya. Einstein menunjukkan bahwa lintasan cahaya akan mengalami pembelokan ketika berada dekat dengan benda-benda luar angkasa yang besar-besar itu.  Tahu nggak, teori ini berhasil lolos ujian yang amat sulit, yaitu ketika menentukan gerakan presesi dari perihelion orbit planet Merkuri.  Kemudian pada tahun 1919 ketika terjadi gerhana matahari total di teluk Guinea, Afrika sekelompok ilmuwan Inggris berusaha membuktikan adanya pembelokan cahaya bintang ketika berada dekat sekali dengan matahari seperti yang diramalkan oleh Teori Relativitas Umum Einstein. Para astronomer memfoto berbagai posisi suatu bintang tertentu ke arah matahari dan kemudian mengulangi 6 bulan kemudian. Ternyata ramalan Einstein benar! Saat itu Einstein menjadi sangat terkenal. (***)

Einstein: Newton forgive me…. [1]

Itu kata-kata Einstein saat teori yang dihasilkannya ternyata berhasil menggulingkan teori Isaac Newton, seorang fisikawan legendaris, yang teorinya dipercaya oleh dunia sebelum munculnya teori Einstein yang mengobrak-abrik semuanya. Albert Einstein membuat heboh dengan Teori Relativitas Khusus (The Special Theory of Relativity) yang ditelorkannya pada tahun 1905. Sebentar lagi, teori yang pernah mengagetkan dunia ini akan merayakan ulang tahunnya yang ke-100! Perayaan seabadnya (Centenary) teori si jenius Albert Einstein ini bisa dilihat dari ramainya majalah-majalah ilmiah yang mulai membahas kembali teori yang sudah mengguncang dunia selama seratus tahun ini. Tahun 2005 bahkan dicanangkan sebagai The World Year of Physics untuk mengenang kebesaran Einstein. Apa sih istimewanya teori ini? Koq seluruh dunia begitu heboh merayakan kelahirannya ini? Yuk, kita ikut dalam gosip seru tentang apa yang menjadi dasar lahirnya teori ini…

Seorang ahli matematika dari Perancis, Jules Henri Poincaré, pernah mengajukan perumpamaan berikut. Di suatu malam, kita sedang asyik tidur dengan lelap di tempat tidur kita yang nyaman. Tiba-tiba seluruh jagad raya mengembang sehingga ukurannya menjadi seribu kali lebih besar dari ukuran semula. Seluruh jagad raya ini maksudnya semua benda di bumi dan di luar bumi, mulai dari benda-benda mati sampai semua jenis makhluk hidup, termasuk kita sendiri yang sedang lelap tertidur. Karena kita sedang asyik bermimpi, kita tidak menyadari kejadian ini. Sewaktu kita terbangun di pagi harinya, apa kita bisa merasakan bahwa semuanya sudah menjadi lebih besar? Apa kita bisa merasakan perbedaannya? Kalaupun kita diberi tahu bahwa ada kejadian menghebohkan tersebut saat kita tertidur, apakah ada yang bisa membuktikannya? Pasti kita tidak merasakan perbedaan apa pun walaupun seluruh jagad raya kini sudah berubah ukurannya. Ini karena semuanya ikut berubah sehingga tidak ada satu pun yang bisa dijadikan patokan untuk mengukur terjadinya perubahan tersebut. Karena itu, kita juga tidak mungkin bisa membuktikan bahwa seluruh jagad raya ini kini telah menjadi seribu kali lebih besar. Semua terlihat sama. Lain halnya jika hanya tubuh kita yang tiba-tiba menciut menjadi sangat kecil (ingat film fiksi Honey, I Shrunk the Kids!), sedangkan seluruh jagad raya tetap pada ukurannya semula. Tidak ada satu pun yang berubah ukuran kecuali tubuh kita sendiri. Wah, sudah pasti kita langsung panik karena kita bisa langsung merasakan perbedaan itu. Kita langsung tahu apa yang terjadi karena kita bisa melihat bahwa sekeliling kita tiba-tiba tampak seperti raksasa. Baju yang kita pakai tiba-tiba kedodoran, dan cincin yang biasa melingkar manis di jari kita tiba-tiba tampak seperti lingkaran raksasa yang berat dan menyeramkan karena hampir jatuh menimpa tubuh kerdil kita itu. Tetapi, apakah itu berarti bahwa tubuh kita yang mengecil, atau sekeliling kita yang tiba-tiba membesar? Hmm… bingung juga ya!

Bagaimana cara kita menentukan mana yang besar dan mana yang kecil? Apakah planet bumi yang kita tempati ini bisa disebut berukuran besar? Kalau dibandingkan dengan ukuran bola basket yang biasa kita mainkan di sekolah, tentu saja planet bumi ini tampak seperti bola raksasa yang sangat besar! Tetapi kalau kita bandingkan dengan matahari, planet bumi ini termasuk kecil! Jadi, yang mana yang benar? Besar atau kecil? Tidak ada yang benar, dan tidak ada yang salah! Itulah letak permasalahannya. Ukuran tidak bisa dinyatakan secara absolut. Untuk mengukur sesuatu kita perlu sesuatu yang lain sebagai perbandingannya. Ini berarti bahwa ukuran (orang fisika lebih senang menyebutnya sebagai: Length) selalu bersifat relatif, tidak ada yang mutlak berukuran besar ataupun kecil.

Sekarang kita coba lihat kasus lain. Masih ingat cerita si Kancil yang gesit dan lincah? Kancil bisa berlari sangat cepat. Tunggu dulu! Apa benar kancil itu cepat? Kalau dibandingkan dengan siput, sudah pasti si kancil terlihat sangat cepat. Kalau dibandingkan dengan juara olimpiade pun kancil masih terlihat sangat cepat. Tetapi kalau kita bandingkan dengan pesawat terbang, tentu saja si kancil jadi terlihat begitu lambat. Apa ini berarti pesawat terbang itulah yang cepat? Tidak juga! Kalau kita lihat roket yang meluncur ke luar angkasa, kita bisa langsung tahu bahwa roket itu jauh lebih cepat dari pesawat terbang biasa. Ini berarti, kecepatan pun merupakan sesuatu yang relatif. Kita juga bisa membuktikan ini saat kita sedang mengantar saudara kita yang akan pergi ke luar kota naik kereta api cepat. Sewaktu kereta mulai meluncur, kita melihat saudara kita itu melesat dengan cepat. Tetapi di dalam kereta itu sendiri, orang yang duduk di sebelah saudara kita itu melihat bahwa saudara kita itu duduk diam dan tenang di sebelahnya. Jadi, bagi kita yang sedang berada di luar kereta yang sedang meluncur itu, saudara kita memang terlihat bergerak dengan cepat. Tetapi bagi semuanya yang ada di dalam kereta, ia terlihat sedang diam. Jadi, waktu (Time) tidak mempunyai nilai absolut, sama seperti ruang (Space). Semuanya harus selalu dibandingkan dengan sesuatu yang bisa dijadikan patokan. Misteri inilah yang diutak-atik oleh otak jenius Einstein sehingga melahirkan teori relativitasnya yang terkenal itu. Semua hal yang tampak sebagai sesuatu yang absolut ternyata merupakan sesuatu yang relatif.

Alam Gaib dari Sudut Pandang Fisika Teori

SETELAH ruang ada lagi ruang. Panjang, lebar dan tinggi, tiga dimensi yang membentuk ruang. Jika ditambah dengan satu satuan lagi maka akan terbentuk dimensi keempat. Dimensi ”gaib” ini dipercaya eksistensinya oleh para pakar fisika teori. Mereka menyebutnya hyperspace atau hiperspasial.
Ada juga yang menyebut dimensi keempat ini sebagai dimensi kelima. Ini karena waktu dianggap sebagai dimensi keempat dalam realita hidup ini. Namun waktu sejauh ini bersifat linier atau berada pada garis lurus yang tidak akan pernah kembali lagi. Waktu pun tidak membentuk ruang baru yang bisa ditempati oleh entitas yang memiliki dimensi (tiga saja tentunya).

Hiperspasial ini sudah sejak abad 19 dibicarakan para pemikir fisika. Baru pada abad 20 pendapat berbobot mengenai ini dikemukakan oleh ahli matematika Prusia, Theodore Kaluza. Pada tahun 1919, Kaluza menulis surat kepada Albert Einstein yang mengungkapkan bahwa seharusnya ada dimensi keempat. Ia memberi alasan bahwa gravitasi dan radiasi gelombang elektromagnetik merupakan manifestasi yang sama dari suatu entitas ke ruangan yang sama. Baru tiga tahun kemudian Einstein membalas surat Kaluza itu dengan persetujuannya.

Bukti

Bagi masyarakat awam, di luar Einstein dan kawan-kawannya, lebih mudah mengadaptasi konsep gaib dibandingkan teori fisika yang rumit. Kita hanya akan mengamini saja ”alam gaib” dimensi keempat itu, cukup hanya percaya bahwa alam itu ada dan tidak terlihat.

Para pemikir pun setuju bahwa dimensi keempat tidak bisa dilihat oleh kita yang berada dalam tiga dimensi. Ini dijelaskan mereka melalui pengandaian keberadaan kita dalam suatu dimensi. Jika Anda adalah titik dalam suatu garis maka Anda hanya bisa bergerak dari satu ujung garis ke ujung lainnya. Jadi kesadaran Anda mengatakan hanya ada dua titik ekstrem dalam dunia Anda. Begitu pula jika Anda berada dalam dunia dua dimensi, panjang dan lebar. Sebagai titik, Anda bisa bergerak ke luar, ke daerah lebar dan dari sana Anda bisa melihat dimensi pertama yakni garis panjang tadi.

Begitu pula jika berada dalam tiga dimensi di mana terdapat panjang, lebar dan tinggi. Dari dimensi itu suatu titik bisa bergerak ke berbagai arah dan mengamati satu dimensi, dan juga dua dimensi serta menyadari adanya tiga dimensi. Ia bisa melihat bentuk garis, bentuk bidang datar dan bentuk piramida atau kubus. Ini seperti manusia berada dalam ruang dan melihat benda-benda lain, serta bergerak untuk mendapatkan perspektif yang berbeda.

Bagi para pakar teori fisika ini sudah bukti yang cukup. Titik dalam garis yang hanya menyadari adanya dua ekstrem bukanlah bukti bahwa batasan dunianya hanya garis saja. Titik dalam bidang datar bukan berarti dunianya hanya panjang dan lebar. Begitu pula kita yang berada dalam tiga dimensi, bukan berarti tidak ada dimensi keempat.

Itulah mengapa gravitasi dan gelombang elektromagnetik, suatu entitas yang ada dan bergerak di berbagai lokasi ruang, merupakan bukti. Sumber dan sebab gravitasi dan gelombang elektromagnetik belum diketahui dalam realita ruang tiga dimensi yang dikenal sekarang.

Titik pengandaian kita tadi yang berada dalam tiga dimensi bisa bergerak ke dalam dua dimensi dan ke dalam satu dimensi, titik kita itu bisa menjadi bagian dari bidang datar atau dari garis lurus. Kita, manusia yang berada dalam ruang tiga dimensi bisa merangkai diri menjadi garis atau bidang datar. Jadi suatu entitas yang berada dalam empat dimensi tentu bisa bergerak ke tiga dimensi, atau ke dimensi yang lebih rendah. Itulah gelombang elektromagnetik dan gravitasi yang diajukan Theodore Kaluza pada Albert Einstein.

Gurame Gila

Dr. Michio Kaku, profesor fisika teori pada City University di New York memiliki penjelasan ikan gurame terhadap hiperspasial. Michio Kaku lulus summa cum laude dalam ilmu fisika dari Harvard pada tahun 1968 dan mendapatkan doktornya dari Berkeley University tahun 1972. Buku teks untuk tingkat S3 karangannya menjadi bacaan wajib pada laboratorium fisika berbagai universitas.

Michio Kaku mengandaikan, jika seekor gurame dalam kolam menjadi ilmuwan dan dia mulai berteori tentang dunia langit di atas dunia air maka tentu saja si gurame ini akan dibilang gila. Namun ketika hujan turun akan ada lingkaran gelombang akibat tetes air yang bisa disaksikan dari dalam kolam, dunianya para gurame.

Inilah jalan untuk pembuktian teori dunia langit atau dimensi di luar dunia yang mereka lihat itu. Dalam dunia manusia, menurut Dr. Michio Kaku, sinar dan gravitasi merupakan lingkaran gelombang yang berasal dari dimensi keempat yang bisa kita buktikan keberadaanya di dimensi kita.

Seperti apa bentuk hiperspasial masih menjadi perdebatan para pemikirnya. Pada tahun 1926 ahli matematika Swedia, Oskar Klein mengajukan jawaban pragmatis. Menurut dia dimensi keempat ini bentuknya sangat kecil hingga tidak terdeteksi oleh manusia. Gabungan unit keruangan seperti itu disebut botol Kaluza-Klein dan menjadi dasar dari wacana mutakhir yang disebut Teori Benang.
Bayangkan seekor semut hidup di atas benang. Ia hanya akan mengetahui dunianya di depan dan belakangnya saja. Jika melihat benang ini secara rinci maka akan terlihat bagian benang yang menggulung. Di dalamnya terdapat ruang yang tidak akan disadari oleh si semut. Ruang yang tergulung ini yang disebut hiperspasial menurut Kaluza dan muridnya Klein.

Ruang gulungan berupa benang ini jika bergerak akan menghasilkan getaran yang bisa dirasakan di seluruh ruang. Ini sama dengan dawai digetar dan resonansi suara bergetar di seluruh ruang. Getar benang hiperspasial ini adalah gravitasi dan gelombang elektromagnetik.

Kebalikan dari ruang yang sangat kecil ini adalah ruang dimensi keempat yang sangat besar. Ini seperti bertolak belakangnya upaya fisika untuk menjelaskan fisika kuantum dan teori relativitas Einstein. Kuantum berbicara tentang entitas yang makin mengecil, sedangkan teori relativitas menjelaskan tentang sesuatu yang sangat besar, seperti galaksi, kuasar, lubang hitam dan teori Ledakan Akbar.

Dalam hiperspasial, para penghuni dimensi ketiga menjadi tidak sadar karena besar dan bentuknya yang melengkung hingga yang disadari hanya bidang datar di sekelilingnya saja. Ini sama seperti pandangan bahwa bumi itu datar bukannya bulat. Biasanya lengkungan luar biasa besar ini yang menjadi bahan cerita dalam kisah fiksi ilmiah. Ingat pergerakan Starship Entreprise ke hyperspace dengan warp speed? Ini pengejewantahan teori menjadi fiksi.

Fiksi atau ilmiah menjadi dimensi yang tidak berbatas dengan jelas. Jules Verne berkisah tentang kapal selam dan perjalanan ke bulan seratus tahun sebelum benda ini berhasil diciptakan dunia ilmu pengetahuan. Einstein berbicara tentang lengkungan dalam ruang dan waktu yang menghasilkan gravitasi dan gelombang elektromagnetik dalam Teori Relativitas.

Dimensi keempat atau hiperspasial sekarang jadi wahana pakar fisika teori untuk menghasilkan rumus pamungkas yang bisa menjelaskan dari inti atom hingga terbentuknya alam raya. Rumus ini adalah teori tentang segalanya dan segalanya adalah penciptaan alam. Jika kita bisa keluar dari keterbatasan pandangan kita dan melihat dunia luar yang kerap kita sebut gaib, maka pertanyaan besar tentang kreasi alam mungkin bisa terjawab.

Sinar Harapan, 26 Nov 2001

Menyukai Fisika Lewat Imajinasi

oleh Mumud Salimudin

http://4.bp.blogspot.com/_f_xHHsVKgds/S7lFUUgvq-I/AAAAAAAAAH8/OQ1tUJwLeSg/s1600/banner_physics.gif

Imajinasi lebih utama daripada pengetahuan. Pengetahuan bersifat terbatas. Imajinasi melingkupi dunia. -Albert Einstein.

Berbicara tentang fisika dapat menimbulkan tanggapan yang beragam. Bukan gosip lagi kalau fisika merupakan salah satu “hantu” yang ditakuti oleh banyak pelajar, baik itu di tingkat menengah, umum, dan bahkan di perguruan tinggi. Sebagian orang menghafalkan rumus-rumus fisika layaknya buku sejarah tanpa menyadari maknanya. Ada juga yang pasrah karena menganggap fisika hanyalah milik orang-orang yang serius, cerdas, gila matematika, dan pada umumnya “kurang gaul”. Bahkan, tidak sedikit yang beranggapan bahwa menjadikan fisika sebagai karir hidup adalah pilihan yang salah karena “masuknya” mudah tapi “keluarnya” susah. Dengan kata lain, menjadi mahasiswa fisika tidaklah sulit tapi lulusnya setengah mati dan kerjanya paling-paling menjadi guru atau kalau beruntung bisa menjadi dosen.

Beberapa pelajar mengagumi fisika karena membaca berita mengenai keberhasilan tim olimpiade fisika atau membaca buku tentang kehidupan para ilmuwan besar. Sayang, banyak juga yang hanya sebatas mengagumi tidak sampai menghayati atau mendalami fisika. Seringkali orang yang menguasai fisika dianggap sebagai orang “keren” sekaligus “aneh” karena mau belajar sesuatu yang sulit, padahal kalau jadi pengusaha bisa kaya-raya. Persepsi-persepsi demikian mengakibatkan masyarakat umum cenderung menggemari ilmu lain seperti metafisika. Disaat negara-negara lain berusaha untuk menyadarkan masyarakatnya agar tidak “gaptek” alias gagap iptek negara kita melalui beberapa media massa tampaknya bekerja keras meyakinkan masyarakat agar tidak “gagib” atau gagap gaib. Padahal, penyampaian informasi ini menggunakan aplikasi fisika dan elektronika. Singkatnya, menemukan orang yang menyukai fisika bagaikan mencari jarum pentul didalam tumpukan jerami.

Banyak sekali pelajar atau mahasiswa yang sabar menunggu penayangan rumus-rumus fisika di papan tulis, kemudian mengerjakan soal-soal fisika. Dari pengalaman, soal-soal tersebut diselesaikan dengan cara “gotong-royong” karena hanya sedikit orang yang bisa atau mau mengerjakannya. Keberhasilan pengajaran tidak jarang didasarkan atas kemampuan mengerjakan soal-soal ujian akhir, bukan pada penguasaan makna fisis dari rumus tersebut.

Sebagai contoh, hampir semua orang di kelas tahu hukum kedua Newton, F = m.a, tetapi mungkin tak pernah terbayangkan bahwa rumus tersebut dapat menceritakan mengapa orang-orang gendut lebih suka main tarik tambang daripada lari 100 meter. Kemudian, siapa yang tak mengenal persamaan terkenal Einstein E = mc2 ? Sayang, sedikit sekali orang yang mengetahui bahwa massa sebuah buku fisika dasar mengandung energi yang dapat membawa suatu wahana antariksa ke bulan!

Salah satu penyebab persepsi negatif tentang fisika adalah bahwa ilmu tersebut seringkali diajarkan tanpa penghayatan sehingga terasa menyebalkan. Padahal, melalui fisika kita dapat mengetahui banyak hal. Seorang pelajar yang mulai mempelajari ilmu ini tidak perlu jauh-jauh mengunjungi laboratorium untuk melihat fenomena fisika. Kapanpun dan dimanapun ia dapat berimajinasi (menghayal) tentang lingkungan sekitarnya. Keindahan warna bunga yang tampak oleh mata, musik yang terdengar nyaman di telinga, air terjun yang memikat, aliran angin yang sejuk, adalah sedikit contoh dari fenomena fisika sehari-hari. Penjelasan bahwa setiap warna memiliki panjang gelombang yang berbeda-beda dan bahwa benda-benda menyerap serta meradiasikan panjang gelombang tertentu sehingga sampai ke mata kita, dapat dibaca dalam buku fisika. Akan tetapi seringkali orang tidak peduli dengan penjelasan itu karena tidak berimajinasi sehingga ia lupa akan keindahan alam dan tidak memiliki rasa ingin tahu.

Imajinasi lahir dari lingkungan yang mendukung seseorang agar memikirkan berbagai fenomena disekitarnya. Jika masyarakat sekitar atau keluarga di rumah tidak menghargai kebebasan berpikir maka daya imajinasi sulit untuk berkembang. Hampir semua fisikawan terkenal adalah orang-orang yang suka berimajinasi dan seringkali dikatakan sebagai pemikir “radikal” karena dianggap aneh oleh lingkungan yang seringkali bersifat dogmatis. Einstein adalah contoh populer dari orang yang suka berimajinasi dan mengembangkannya. Ia membayangkan bagaimana seandainya ia dapat bergerak dengan kecepatan cahaya. Pemikiran aneh ini menghasilkan teori relativitas khusus yang sampai kini masih digunakan. Hal yang sama dilakukan oleh Newton. Kalau saja ia tidak suka melamun dibawah pohon apel mungkin hukum gravitasi universalnya tidak ditemukan sampai berpuluh-puluh tahun kemudian.

Melalui imajinasi, kesadaran untuk mengamati fenomena alam dan membaca buku-buku fisika akan muncul dengan sendirinya. Sebagai contoh, molekul air (H2O) terdiri atas dua buah atom hidrogen dan sebuah atom oksigen. Kita tentu tidak mungkin melihat molekul air dengan mata telanjang. Akan tetapi, kita bisa berimajinasi bahwa molekul-molekul tersebut berukuran kecil sekali sehingga tak tampak. Oleh karenanya, jumlah molekul yang menyusun suatu benda haruslah sangat banyak. Melalui imajinasi kita tergerak untuk mempelajari bahwa satu mol molekul air (yang beratnya sekitar 18 gram) mengandung sekitar 6 x 1023 molekul. Jadi, satu sendok air ternyata terdiri atas sekitar 1022 molekul. Jumlah itu sangatlah besar. Jika seluruh penduduk indonesia diberi tugas untuk menghitung satu per satu molekul berbeda tiap 5 detik maka itu membutuhkan waktu bermiliar-miliar tahun!

Fisikawan tidak membuat rumus-rumus untuk dihafalkan atau ditulis pada telapak tangan. Rumus-rumus dibuat untuk memahami fenomena-fenomena alam dalam bentuk yang ringkas, indah, universal, dan berguna untuk menyelesaikan masalah yang menyangkut fenomena tersebut. Memang, fisika tidak mungkin terlepas dari matematika. Tanpa definisi matematis, fisika sangat sulit dikembangkan dan dimanfanfaatkan sebagai teknologi. Meskipun demikian, untuk mempelajari dasar-dasar fisika seseorang tidak perlu menjadi “gila” matematika ataupun menjadi serius dan takut tak dapat pacar karena “kurang gaul”. Belajar fisika memang tidak mudah, tapi dengan melepaskan diri dari pemikiran yang dogmatis dan keinginan untuk berpikir bebas, imajinasi akan muncul dan bisa menjadi petualangan yang menyenangkan bagi siapapun.

Sungai Gorge di Afrika Selatan menyimpan keindahan tiada tara. Banyak sekali fenomena fisika yang membuat pemandangan diatas begitu mempesona: Hukum pemantulan dan pembiasan menghasilkan gambaran ‘gunung terbalik’ yang terlihat diatas permukaan sungai. Polarisasi cahaya matahari oleh molekul diudara memberikan pemandangan biru yang sangat serasi dengan warna hijau dan coklat muda. Tiupan angin akibat adanya perbedaan tekanan udara menggerakan dedaunan pohon secara terirama. Tampak seekor hewan mengkonsumsi makanan dan minuman untuk mempertahankan kehidupan, suatu proses mengurangi entropi (ketidakteraturan) dengan cara menambah energi dalam hewan. Bukankah fisika itu indah? (diambil dari Microsoft Reference Library 2003. Encarta)

Albert Einstein : Sang Ilmuwan terbesar abad 20

[Albert-Einstein.jpg]

Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan “pengabdiannya bagi Fisika Teoretis”. Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia. Pada tahun 1999, Einstein dinamakan “Orang Abad Ini” oleh majalah Time. Kepopulerannya juga membuat nama “Einstein” digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya “Albert Einstein” didaftarkan sebagai merk dagang. Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.

Biografi

1. Masa muda dan universitas

Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola. Pada umur lima, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang “kosong” ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya).

Di waktu kecilnya Albert Einstein nampak terbelakang karena kemampuan bicaranya amat terlambat. Wataknya pendiam dan suka bermain seorang diri. Bulan November 1981 lahir adik perempuannya yang diberi nama Maja. Sampai usia tujuh tahun Albert Einstein suka marah dan melempar barang, termasuk kepada adiknya.

Minat dan kecintaannya pada bidang ilmu fisika muncul pada usia lima tahun. Ketika sedang terbaring lemah karena sakit, ayahnya menghadiahinya sebuah kompas. Albert kecil terpesona oleh keajaiban kompas tersebut, sehingga ia membulatkan tekadnya untuk membuka tabir misteri yang menyelimuti keagungan dan kebesaran alam.

Meskipun pendiam dan tidak suka bermain dengan teman-temannya, Albert Einstein tetap mampu berprestasi di sekolahnya. Raportnya bagus dan ia menjadi juara kelas. Selain bersekolah dan menggeluti sains, kegiatan Albert hanyalah bermain musik dan berduet dengan ibunya memainkan karya-karya Mozart dan Bethoveen.

Albert menghabiskan masa kuliahnya di ETH (Eidgenoessische Technische Hochscule). Pada usia 21 tahun Albert dinyatakan lulus. Setelah lulus, Albert berusaha melamar pekerjaan sebagai asisten dosen, tetapi ditolak. Akhirnya Albert mendapat pekerjaan sementara sebagai guru di SMA. Kemudian dia mendapat pekerjaan di kantor paten di kota Bern. Selama masa itu Albert tetap mengembangkan ilmu fisikanya..

Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme. Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika. Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia. Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur; dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.

Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Maric, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar oleh Eidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.

2. Kerja dan Gelar Doktor

Pada saat kelulusannya Einstein tidak dapat menemukan pekerjaan mengajar, keterburuannya sebagai orang muda yang mudah membuat marah professornya. Ayah seorang teman kelas menolongnya mendapatkan pekerjaan sebagai asisten teknik pemeriksa di Kantor Paten Swiss dalah tahun 1902. Di sana, Einstein menilai aplikasi paten penemu untuk alat yang memerlukan pengatahuan fisika. Dia juga belajar menyadari pentingnya aplikasi dibanding dengan penjelasan yang buruk, dan belajar dari direktur bagaimana “menjelaskan dirinya secara benar”. Dia kadang-kadang membetulkan desain mereka dan juga mengevaluasi kepraktisan hasil kerja mereka. Einstein menikahi Mileva pada 6 Januari 1903. Pernikahan Einstein dengan Mileva, seorang matematikawan, adalah pendamping pribadi dan kepandaian; Pada 14 Mei 1904, anak pertama dari pasangan ini, Hans Albert Einstein, lahir. Pada 1904, posisi Einstein di Kantor Paten Swiss menjadi tetap. Dia mendapatkan gelar doktor setelah menyerahkan thesis “Eine neue Bestimmung der Moleküldimensionen” (“On a new determination of molecular dimensions”) dalam tahun 1905 dari Universitas Zürich.

Tahun 1905 adalah tahun penuh prestasi bagi Albert, karena pada tahun ini ia menghasilkan karya-karya yang cemerlang. Berikut adalah karya-karya tersebut:
Maret: paper tentang aplikasi ekipartisi pada peristiwa radiasi, tulisan ini merupakan pengantar hipotesa kuantum cahaya dengan berdasarkan pada statistik Boltzmann. Penjelasan efek fotolistrik pada paper inilah yang memberinya hadiah Nobel pada tahun 1922.
April : desertasi doktoralnya tentang penentuan baru ukuran-ukuran molekul. Einstein memperoleh gelar PhD-nya dari Universitas Zurich.
Mei : papernya tentang gerak Brown.
Juni : Papernya yang tersohor, yaitu tentang teori relativitas khusus, dimuat Annalen der Physik dengan judul Zur Elektrodynamik bewegter Kurper (Elektrodinamika benda bergerak).
September : kelanjutan papernya bulan Juni yang sampai pada kesimpulan rumus termahsyurnya : E = mc2, yaitu bahwa massa sebuah benda (m) adalah ukuran kandungan energinya (E). c adalah laju cahaya di ruang hampa (c ~ 300 ribu kilometer per detik). Massa memiliki kesetaraan dengan energi, sebuah fakta yang membuka peluang berkembangnya proyek tenaga nuklir di kemudian hari. Satu gram massa dengan demikian setara dengan energi yang dapat memasok kebutuhan listrik 3000 rumah (berdaya 900 watt) selama setahun penuh, suatu jumlah energi yang luar biasa besarnya.

[matter-and-energy-Physics-e=mc2.jpg]

Di tahun yang sama dia menulis empat artikel yang memberikan dasar fisika modern, tanpa banyak sastra sains yang dapat ia tunjuk atau banyak kolega dalam sains yang dapat ia diskusikan tentang teorinya. Banyak fisikawan setuju bahwa ketiga thesis itu (tentang gerak Brownian), efek fotoelektrik, dan relativitas spesial) pantas mendapat Penghargaan Nobel. Tetapi hanya thesis tentang efek fotoelektrik yang mendapatkan penghargaan tersebut. Ini adalah sebuah ironi, bukan hanya karena Einstein lebih tahu banyak tentang relativitas, tetapi juga karena efek fotoelektrik adalah sebuah fenomena kuantum, dan Einstein menjadi terbebas dari jalan dalam teori kuantum. Yang membuat thesisnya luar biasa adalah, dalam setiap kasus, Einstein dengan yakin mengambil ide dari teori fisika ke konsekuensi logis dan berhasil menjelaskan hasil eksperimen yang membingungkan para ilmuwan selama beberapa dekade. Dia menyerahkan thesis-thesisnya ke “Annalen der Physik”. Mereka biasanya ditujukan kepada “Annus Mirabilis Papers” (dari Latin: Tahun luar biasa). Persatuan Fisika Murni dan Aplikasi (IUPAP) merencanakan untuk merayakan 100 tahun publikasi pekerjaan Einstein di tahun 1905 sebagai Tahun Fisika 2005.

3. Gerakan Brownian

Di artikel pertamanya di tahun 1905 bernama “On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid”, mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setlah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial. Sebelum thesis ini, atom dikenal sebagai konsep yang berguan, tetapi fisikawan dan kimiawan berdebat dengan sengit apakah atom benar suatu benda yang nyata. Diskusi statistik Einstein tentang kelakuan atom memberikan pelaku eksperimen sebuah cara untuk menghitung atom hanya dengan melihat melalui mikroskop biasa. Wilhelm Ostwald, seorang pemimpin sekolah anti-atom, kemudian memberitahu Arnold Sommerfeld bahwa ia telah berkonversi kepada penjelasan komplit Einstein tentang gerakan Brownian.

Tahun 1909, Albert Einstein diangkat sebagai profesor di Universitas Zurich. Tahun 1915, ia menyelesaikan kedua teori relativitasnya. Penghargaan tertinggi atas kerja kerasnya sejak kecil terbayar dengan diraihnya Hadiah Nobel pada tahun 1921 di bidang ilmu fisika. Selain itu Albert juga mengembangkan teori kuantum dan teori medan menyatu.

Pada tahun 1933, Albert beserta keluarganya pindah ke Amerika Serikat karena khawatir kegiatan ilmiahnya – baik sebagai pengajar ataupun sebagai peneliti – terganggu. Tahun 1941, ia mengucapkan sumpah sebagai warga negara Amerika Serikat. Karena ketenaran dan ketulusannya dalam membantu orang lain yang kesulitan, Albert ditawari menjadi presiden Israel yang kedua. Namun jabatan ini ditolaknya karena ia merasa tidak mempunyai kompetensi di bidang itu. Akhirnya pada tanggal 18 April 1955, Albert Einstein meninggal dunia dengan meninggalkan karya besar yang telah mengubah sejarah dunia.

Meskipun demikian, Albert sempat menangis pilu dalam hati karena karya besarnya – teori relativitas umum dan khusus – digunakan sebagai inspirasi untuk membuat bom atom. Bom inilah yang dijatuhkan di atas kota Hiroshima dan Nagasaki saat Perang Dunia II berlangsung.

Referensi :

http://id.wikipedia.org

http://stevyhanny.blogspot.com

Louis de Broglie : Perintis Kuantum Terakhir

de Broglie

Hans J. Wospakrik (Fisika ITB)

Pengantar

Berpulangnya Duc Prinz Louis de Broglie, fisikawan teori Perancis, bulan Maret lalu pada usia 94 tahun, mengakhiri kehadiran perintis teori kuantum yang hidup di tengah kita. Mereka adalah pendobrak ilmu dengan gagasan-gagasan revolusioner pada awal abad ini yang memberi wajah baru bagi fisika, guna memahami alam atom yang mini. Ini, pada gilirannya, membuka jalan ke berbagai temuan teknologi menakjubkan, seperti transistor dan laser, yang tidak diduga sebelumnya. Untuk mengenang perintis kuantum terakhir ini, tulisan berikut mencoba memberi gambaran sekilas tentang karya dan biografinya.

Adalah Max Planck (1858-1947), ilmuwan fisika teori Jerman, yang mencetuskan gagasan awal tentang teori kuantum. Ini lahir dari upayanya untuk menjelaskan teka-teki fisika yang berkaitan dengan pancaran tenaga (energi) gelombang elektromagnet oleh benda (hitam) panas. Pemecahannya ia temukan pada 1901 dengan anggapan bahwa “tenaga gelombang elektromagnet dipancarkan dan diserap bahan dalam bentuk catu-catu tenaga (diskrit) yang sebanding dengan frekuensi gelombang elektromagnet”.

Catu tenaga ini disebutnya kuanta (latin: sekian banyak: kuantum, bentuk tunggalnya). Dengan demikian, tahun 1901 dicatat sebagai awal bergilirnya bola teori kuantum. Namun, para fisikawan seangkatannya memandang gagasan Planck ini tidak mempunyai makna fisika yang jauh melainkan sekadar sebagai suatu kiat matematika belaka.

Empat tahun kemudian, pemuda Albert Einstein (1879-1955) mencatat dirinya sebagai orang pertama yang menerapkan gagasan Planck lebih jauh dalam fisika. Salah satunya, berkaitan dengan “efek fotolistrik”, yaitu teka-teki terbebaskannya elektron-elektron dari permukaan logam bila disinari cahaya (gelombang elektromagnet).

Penjelasannya, karena elektron-elektron itu ditumbuk dan ditendang keluar oleh kuanta-kuanta cahaya yang berperilaku sebagai partikel (zarah). Kuanta cahaya ini disebut Einstein, foton. Dengan demikian, cahaya (gelombang elektromagnet) yang mulanya dipandang sebagai gelombang, kini diperlakukan pula sebagai partikel oleh Einstein.

Bahwa foton menumbuk elektron, seperti halnya tumbukan dua bola bilyard, kemudian dibuktikan dengan percobaan oleh Arthur H. Compton (1892-1962) dari Amerika Serikat pada 1923, yang mengabadikan namanya dengan peristiwa itu.

Gelombang partikel

Gagasan foton Einstein kemudian diterapkan Louis de Broglie pada 1922, sebelum Compton membuktikannya, untuk menurunkan Hukum Wien (1896). Ini menyatakan bahwa “bagian tenaga elektromagnet yang paling banyak dipancarkan benda (hitam) panas adalah yang frekuensinya sekitar 100 milyar kali suhu mutlak (273 + suhu Celsius) benda itu”. Pekerjaan ini ternyata memberi dampak yang berkesan bagi de Broglie.

Pada musim panas 1923, de Broglie menyatakan, “secara tiba-tiba muncul gagasan untuk memperluas perilaku rangkap (dual) cahaya mencangkup pula alam partikel”. Ia kemudian memberanikan diri dengan mengemukakan bahwa “partikel, seperti elektron juga berperilaku sebagai gelombang”. Gagasannya ini ia tuangkan dalam tiga makalah ringkas yang diterbitkan pada 1924; salah satunya dalam jurnal vak fisika Perancis, Comptes Rendus.

Penyajiannya secara terinci dan lebih luas kemudian menjadi bahan tesis doktoralnya yang ia pertahankan pada November 1924 di Sorbonne, Paris. Tesis ini berangkat dari dua persamaan yang telah dirumuskan Einstein untuk foton, E=hf dan p=h/. Dalam kedua persamaan ini, perilaku yang “berkaitan” dengan partikel (energi E dan momentum p) muncul di ruas kiri, sedangkan ruas kanan dengan gelombang (frekuensi f dan panjang gelombang , baca: lambda). Besaran h adalah tetapan alam yang ditemukan Planck, tetapan Planck.

Secara tegas, de Broglie mengatakan bahwa hubungan di atas juga berlaku untuk partikel. Ini merupakan maklumat teori yang melahirkan gelombang partikel atau de Broglie. Untuk partikel, seperti elektron, momentum p adalah hasilkali massa (sebanding dengan berat) dan lajunya. Karena itu, panjang gelombang de Broglie berbanding terbalik dengan massa dan laju partikel. Sebagai contoh, elektron dengan laju 100 cm per detik, panjang gelombangnya sekitar 0,7 mm.

Tantangan

Tesis ini kemudian diterbitkan pada awal 1925 dalam jurnal vak fisika Perancis, Annales de Physique. Namun, luput dari perhatian para fisikawan. Bahkan, para penguji de Broglie hanya terkesan dengan penalaran matematikanya tetapi tidak mempercayai segi fisikanya.

Promotornya, Paul Langevin (1872-1946), kemudian mengirimkan satu kopi kepada Einstein di Berlin, yang ternyata memberi rekasi mendukung. Ia memandangnya lebih daripada permainan matematika dengan menekankan bahwa gelombang partikel haruslah nyata. Berita ini kemudian ia teruskan kepada Max Born (1882-1970), fisikawan teori Jerman, di Gottingen.

Born kemudian menanyakan kemungkinan eksperimentalnya kepada James Franck (1882-1964), rekan sekerjanya, yang memberi tanggapan mendukung dengan menunjuk pada teka-teki hasil percobaan Clinton J. Davisson (1881-1958) dan asistennya Charles H. Kunsman dari Amerika Serikat pada 1922 dan 1923. Keduanya mengamati bahwa permukaan logam yang ditembaki dengan berkas elektron selain memancarkan kembali elektron-elektron dengan tenaga yang sangat rendah, ternyata ada pula yang memiliki tenaga sama dengan elektron semula.

Teka-teki ini kemudian terjelaskan oleh Walter Elsaser, mahasiswa Born, pada tahun 1925 dalam sebuah makalah ringkas dengan menggunakan gagasan gelombang de Broglie. Namun sayang, para fisikawan eksperimen tidak terkesan dengan tafsir ulang ini terhadap data percobaan mereka – apalagi oleh seorang mahasiswa berusia 21 tahun yang sama sekali belum dikenal.

Dukungan dan hadiah Nobel

Pada tahun 1926 barulah nampak suatu terang! Erwin Schrodinger (1887-1961), fisikawan teori Austria, merumuskan suatu persamaan matematika yang mengendalikan kelakuan rambatan gelombang partikel dalam berbagai sistem fisika. Ini sama halnya dengan persamaan gerak Newton dalam mekanika Newton (klasik) yang mengendalikan kelakuan gerak partikel.

Karya Schrodinger ini melahirkan mekanika baru yang dikenal sebagai mekanika gelombang atau lazimnya disebut mekanika kuantum. Penerapannya pada struktur atom berhasil menjelaskan berbagai data pengamatan dengan begitu mengesankan, tanpa dipaksa, sehingga menyentakkan para fisikawan untuk menerima gagasan de Broglie.

Dukungan berikutnya datang dari Amerika Serikat, oleh Clinton J. Davisson dan Lester H. Germer (1896 – ?.), yang menerbitkan hasil percobaan mereka pada 1927, bahwa elektron memang memperlihatkan perilaku gelombang. Bukti yang sama tetapi dengan metode percobaan yang berbeda juga dilaporkan oleh George P. Thomson (1892-1975) dari Inggris pada waktu itu.

Dukungan bukti-bukti percobaan ini kemudian mengukuhkan penerimaan gelombang partikel yang diikuti dengan dianugerahkannya hadiah Nobel Fisika (tunggal) 1929 bagi Louis de Broglie. Suatu penghargaan keilmuan bergengsi yang patut bagi karya ilmiahnya yang begitu revolusioner.

Duc Prinz Louis de Broglie

Louis Victor Pierre Raymon de Broglie lahir pada 15 Agustus 1892 di Dieppe, Perancis. Keturunan de Broglie, yang berasal dari Piedmont, Italia barat laut cukup dikenal dalam sejarah Perancis karena mereka telah melayani raja-raja Perancis baik dalam perang dan jabatan diplomatik selama beratus tahun.

Pada 1740, Raja Louis XI mengangkat salah satu anggota keluarga de Broglie, Francois Marie (1671-1745) sebagai Duc (seperti Duke di Inggris), suatu gelar keturunan yang hanya disandang oleh anggota keluarga tertua. Putra Duc pertama ini ternyata membantu Austria dalam Perang Tujuh Tahun (1756-1763). Karena itu, Kaisar Perancis I dari Austria menganugerahkan gelar Prinz yang berhak disandang seluruh anggota keluarga de Broglie.

Dengan meninggalnya saudara tertua Louis, Maurice, juga fisikawan (eksperimen), pada 1960, maka Louis serempak menjadi Duc Perancis (ke-7) dan Prinz Austria.

Louis mulanya belajar pada Lycee Janson de Sailly di Paris dan memperoleh gelar dalam sejarah pada 1909. Ia menjadi tertarik pada ilmu pengetahuan alam karena katanya, “terpengaruh oleh filsafat dan buku-buku Henry Poincare (1854-1912)”, matematikawan besar Perancis.

Pada 1910, Louis memasuki Universitas Paris untuk menyalurkan minatnya dalam ilmu pengetahuan. Tahun 1913 ia peroleh licence dalam ilmu pengetahuan dari Faculte des Sciences. Studinya kemudian terputus karena berkecamuknya Perang Dunia I. Barulah pada usia 32, Louis meraih gelar doktornya dalam fisika teori dengan tesis tentang gelombang partikel di atas. Ia kemudian memulai karier mengajarnya di Universitas Paris dan Institut Henry Poincare pada 1928.

Atom untuk perdamaian

Pada 1945, Louis dan kakaknya Maurice diangkat sebagai anggota dewan Komisi Tinggi Tenaga Atom Perancis. Mereka menaruh perhatian besar pada pengembangan tenaga atom untuk tujuan damai dan mempererat pertalian antara ilmu dan industri.

Hingga akhir hidupnya, Louis de Broglie menjabat sebagai sekretaris tetap pada Akademi Ilmu Pengetahuan Perancis. Dalam jabatannya ini ia tetap mendesak badan tersebut mempertimbangkan secara mendalam berbagai akibat berbahaya dari ledakan bom hidrogen (termonuklir).

Perhatiannya yang begitu besar terhadap ilmu pengetahuan dan perdamaian membuat ia patut dikenang oleh setiap pecinta ilmu dan perdamaian!

Sumber : Kompas (8 Juli 1987)